
HTML

HyperText Markup Language

html template

<!DOCTYPE html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

html structure

head

body

html

p

a

title

HTML structure is a series of nested boxes
or containers. The two major containers are
<head> and <body>.

The names of containers are called “tags.”

<head> contains metadata for the page,
such as the page’s <title> (and other things
we’ll see as we go along).

<body> contains all the visible content of
the page, including text paragraphs (<p>),
anchor links (<a>), graphics (), etc.

html template

<!DOCTYPE html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

This is the basic HTML structure we saw on the last page.

http://www.ualberta.ca

html template

<!DOCTYPE html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

<body> contains everything that is visible on the page, including paragraphs,
images, anchor links, etc. Here, it contains one paragraph and one anchor.

html template

<!DOCTYPE html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

<head> contains metadata about the page. Here, that’s a meta tag and the
page’s title. Later, we’ll put other things in here too.

html template

<!DOCTYPE html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

These are attributes. Attributes function like “adjectives” to the “nouns” that
are the tags. The “grammar” of HTML defines which attributes are allowed on

which tags.

html template

Notice that the attributes are separated from the tag name by a space, and
that the attribute takes the form of attribute=value with no spaces.

<!DOCTYPE html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

two tag types

paired empty

<html></html> <meta charset=utf-8>

<body></body> <hr>

<p></p>

<a>

Markup languages have two types of tags: 1) the traditional “paired” tags and 2) so-called
“empty” tags, which either define a property or else are “replaced” by the browser.

html template

<html>

<head>
 <title>
 </title>
</head>

<body>
 <p>
 <a> 

 </p>
</body>

</html>

Notice the structure: the tags
must be closed in the reverse
order that they were opened.
Last opened, first closed.

This is called well-formed
HTML. There’s no guarantee
that the tags and attributes are
all legal, but being well-formed
is one important part of
writing proper HTML.

malformed html

<html>

<head>
 <title>
 </title>
</head>

<body>
 <p>
 <a> 
 </p>

</body>

</html>

If we reverse the order of tags,
we no longer have well-
formed HTML.

There are no rules about how
browsers are supposed to
handle malformed HTML.
Every browser can handle this
however it wants.

Therefore, to ensure users see
what we want them to see, we
should write well-formed
HTML.

html as a tree

headhead body

titlemeta p p

a

html

This tree structure is called the Document Object Model, or DOM.
We’ll need to get used to this model because it’s how D3 thinks
about a web page. We’ll investigate this structure in much more
detail as we proceed through the term.

html as a language

Languages have two parts:

1) a set of words: a vocabulary or a lexicon

html
head

title

body

href

meta
div

id

class

section

article

footer

These are some of the legal
words allowed in HTML. We
can’t make up our own words.
Even if we did, the browser
wouldn’t understand them
anyway.

These words and their
meanings have been defined
by the World Wide Web
Consortium (W3C).

Tags are like nouns. Attributes
are like adjectives.

svg

select

table

ul

li

span

strong

em

input

form p

html as a language

head

body

html

Languages have two parts:

1) a set of words: a vocabulary or a lexicon

2) a grammar, or some rules, that govern how to construct meaningful expressions.

Some grammatical rules for HTML include
the idea that an <html> container is made
up of a <head> and a <body>.

Or that only <a> tags can take href
attributes.

Or that we can’t put a <p> tag inside
<head>. Only <body> can contain <p>.

Or that any HTML element can take an id
or a class attribute (these are two of what
we call “global attributes,” by the way).

grammatical rules

The legal vocabulary and all the grammatical rules are defined in a document that is called
either a “Document Type Definition” (a DTD) or else a “Schema.” Although there are
technical differences between the two, those terms are often used interchangeably.

In this class, we won’t go so far as to write our own DTDs or schemas.

<!DOCTYPE html>
<html lang=en>

<head>
</head>

<body>
</body>

</html>

The <!DOCTYPE> tag at the top of a
document identifies the particular DTD
whose vocabulary and grammatical rules
will govern this document.

This one says to use a DTD called html
and that is all we need to specify to any
validation service that this document is
written in HTML version 5.

old doctypes

Older doctype definitions were very complex, but you’ll still see them. Here are a few:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://
www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

XHTML version 1.1:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML version 1.0 “Strict”:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

HTML version 4.01 Transitional:

validating HTml

Use the HTML Validator at https://validator.w3.org/ to validate your pages.

https://validator.w3.org/

XML example: poetry

<poem author="Dickinson, Emily">
 <stanza>
 <line n="1">I heard a Fly buzz - when I died -</line>
 <line n="2">The Stillness in the Room</line>
 <line n="3">Was like the Stillness in the Air -</line>
 <line n="4">Between the Heaves of Storm -</line>
 </stamza>

 <stanza>
 <line n="5">The Eyes around - had wrung them dry -</line>
 <line n="6">And Breaths were gathering firm</line>
 <line n="7">For that last Onset - when the King</line>
 <line n="8">Be witnessed - in the Room -</line>
 </stanza>
</poem>

HTML is a poor choice to mark up literature like this. Here, tags like <poem> and
<stanza> and <line> and attributes like author are not legal HTML. This is an example
of Extensible Markup Language, or XML.

The point of XML is that we can invent our own tags and our own grammar. Here, a
<poem> contains <stanza> containers, which in turn contain <line> tags.

XML example: Marc record

<record>

 <datafield tag="245" ind1="1" ind2="0">

 <subfield code="a">Traffic :</subfield>

 <subfield code="b">why we drive the way we do (and what it says about us) /</subfield>

 <subfield code="c">Tom Vanderbilt.</subfield>

 </datafield>

 <datafield tag="250" ind1=" " ind2=" ">

 <subfield code="a">1st ed.</subfield>

 </datafield>

 <datafield tag="260" ind1=" " ind2=" ">

 <subfield code="a">New York :</subfield>

 <subfield code="b">Alfred A. Knopf,</subfield>

 <subfield code="c">2008.</subfield>

 </datafield>

</record>

Here’s a simplified MarcXML record that records bibliographic data about a book. These
data containers have precise meanings and HTML would be a poor choice to capture the
complexity of this information.

html and XML

The last version of HTML before version 5 obeyed all the rules of XML. It was even called
XHTML to emphasize that relationship.

XML

XHTML

XML and XHTML rules

XML and XHTML follow some precise rules:

1) all tags must always be in lowercase.

2) all attribute values must always be in quotation marks. 
tag="245"

3) all attributes must always take a value:  
selected="selected"

3) all empty tags must be “self-closing” by including a terminating / character: 
<meta charset="utf-8" /> 

 
<hr /> 
 

html and XML

The W3C decided, in order to simplify the language, that HTML5 could break several of  
the old XML rules. HTML5 is no longer strictly XML — which really annoys the XML
community and even broke a lot of XML tools that people use to parse and build websites.

XMLHTML5

html and XML

HTML5 validates either in its new form or in an older, XML-compliant form.

XMLHTML5

We can write valid
HTML5 in it’s “new”

form or in a form that’s
also valid XML.

html obeying xml rules

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="utf-8" />
 <title>My Webpage</title>
</head>

<body>
 <p>I'm at the  
 University of Alberta.</p>
</body>

</html>

Notice the quotes on
attribute values and the
closing / on empty tags.

quick review

HTML is “HyperText Markup Language.” We’re on version 5.

To put tags into a document is to “mark it up” and we call the result “markup.” (Note:
you’re probably going to irritate some programmers if you call this “coding.”)

We can create markup files using any plain text editor.

The “Document-Type Declaration” (DTD) or “Schema” specifies both the allowable
vocabulary and the grammatical rules of the language in question.

The World Wide Web Consortium (W3C) creates all the HTML DTDs.

Extensible Markup Language (XML) is a framework within which we can create our own
new languages. In XML, creating the DTD or Schema that defines a new language is our
responsibility.

To be considered “correct,” any markup language document must:

be well-formed (all tags must nest properly)

be valid (must use proper vocabulary in properly grammatical ways)

