
Cascading Style Sheets

It was still 1999...
The W3C made a decision: they’d standardize a subset of HTML and
then would abandon the child. No more HTML. Ever.

And they said, in effect, “OK, if you want stylization and presentation
effects, then we’ll give you stylization and presentation effects. But we’re
going to do it right.”

The result was Cascading Style Sheets (CSS). CSS is a parallel
“language” to HTML that allows minute and precise control over every
visual aspect of HTML. CSS allows you to control parts of HTML that
HTML itself could never control. The result was a two-part structure:

HTML CSS

structural presentational

CSS

CSS & HTML
CSS not only modified but actually extended the presentational abilities
of HTML. That’s why I recommend you have a good CSS reference.
Learning HTML by itself is no longer sufficient and, arguably, learning
CSS is more important than learning HTML.

HTML

What’s CSS?
html

head

<link>

body

<p></p>

body {
 background: blue;
 color: yellow;
}

p {
 font-family: serif;
 line-height: 1.5 em;
}

h1, h2, h3 {
 margin-left: 3 em;
}

The CSS is just another plain text
document that tells the browser
how to draw things. It’s connected
to the webpage via the <link> tag.

The <link> Tag
The <link> tag tells the browser that it should look for an external
document that’s important to this webpage. The <link> tag must go
inside the <head> section and it is an empty tag; it has no closing
counterpart. It requires three attributes:

<link rel=“stylesheet” href=“address_here” type= “text/css”>

Relationship: the browser
should look for this

document’s stylesheet.
(note: it’s one word!)

The <link> Tag
The <link> tag tells the browser that it should look for an external
document that’s important to this webpage. The <link> tag must go
inside the <head> section and it is a solo tag; it has no closing
counterpart. It requires three attributes:

<link rel=“stylesheet” href=“address_here” type= “text/css”>

Relationship: the browser
should look for this

document’s stylesheet.
(note: it’s one word!)

Hypertext Reference:
either relative or absolute

addressing is OK.

The <link> Tag
The <link> tag tells the browser that it should look for an external
document that’s important to this webpage. The <link> tag must go
inside the <head> section and it is a solo tag; it has no closing
counterpart. It requires three attributes:

<link rel=“stylesheet” href=“address_here” type= “text/css”>

Relationship: the browser
should look for this

document’s stylesheet.
(note: it’s one word!)

Hypertext Reference:
either relative or absolute

addressing is OK.

Type: it’s a plain text
document full of CSS

stuff.

The <link> Tag
The <link> tag tells the browser that it should look for an external
document that’s important to this webpage. The <link> tag must go
inside the <head> section and it is a solo tag; it has no closing
counterpart. It requires three attributes:

<link rel=“stylesheet” href=“address_here” type= “text/css”>

Relationship: the browser
should look for this

document’s stylesheet.
(note: it’s one word!)

Hypertext Reference:
either relative or absolute

addressing is OK.

Type: it’s a plain text
document full of CSS

stuff.

CSS Syntax
The syntax for CSS is slightly different from HTML. OK, a lot different:

selector { property: value; }

Where:

p { }

selector is an HTML tag without the < > brackets

background:

property is a tag attribute defined in CSS terms (CSS has
 many more attributes than HTML does!)

blue;

value is a number or a colour or a pre-defined  
 keyword — the “specifics” of this definition.

CSS Syntax
Any tag (“selector”) can define multiple properties. For clarity, I usually
put each one on a separate line and indent it. Notice that each
property-value pair ends in a semi-colon. And note that this is a
moment when computer geeks are immaculately organized:

p {

 background: blue;

 font-family: Georgia, Times, serif;

 text-align: right;

 border: 4px green dotted;

 padding: 2em;

 color: white;

 }

HTML Containers
html

head

<link>

body

<p></p>

We’ve already seen that properly
formed HTML produces a series of
nested containers — the opening
and closing tags mark the
boundaries of the box.

That concept is crucial to CSS for
two reasons:

1) the style sheet tells the browser
how to draw the boxes for each
tag. It uses the “box model.”

2) properties defined in a big box
also apply to all the smaller boxes
inside it. That’s the “cascade.”

The Box Model
All boxes in CSS have the following components:

width

height

padding
border
margin

Notice that the complete box is bigger than is specified by the width and height!

HTML Boxes
html

head

<link>

body

<p></p>

Since nothing in the <head>
section gets displayed, it makes no
sense to try to stylize it with CSS.
No one ever does it.

Many browsers do not recognize
that <html> is a real box, so no
one in CSS-land ever stylizes
<html> either.

That leaves us with <body> as the
biggest box that we can stylize in
our CSS.

The Box Model

body Like all other boxes, body has the
following components:

background 
color (it’s a foreground color*) 
margin (outside the border)  
border 
padding (inside the border)  
width (inside everything) 
height (inside everything)

* The foreground color applies to
fonts and borders

The “Cascade”
I am free to define some or all of those box characteristics in my CSS.
Anything left undefined will be displayed according to the browser’s
default display settings — and remember, those can vary from browser
to browser.

I can also add some other definitions that describe the page’s typography.
They’re not part of the box model per se, but they are additional CSS
features over which I have control:

 body {  
 background: blue;  
 margin: 2 em;  
 font-family: Trebuchet, “Trebuchet MS”, sans-serif;  
 line-height: 1.5em;  
 }

Any sub-containers will also have a blue background, use a sans-serif
font, and be word-processor-esque 1.5 line spaced.

Genetics & Inheritance

body

<p></p>

In this case, everything will be blue. All
my text will be 1.5-spaced and, since I
did not define a foreground color, the
browser will be free to pick a font
color. Black is a common default, but
there’s no guarantee of that.

The bigger container is called the
parent and its smaller containers are its
children. As in genetics, children inherit
qualities from their parents. Some
qualities (like margins, borders and
padding) are not inheritable. That might
seem counter-intuitive, but it’s usually
what you want. If not, you can tell any
child to inherit any specific qualities
from its parent.

A Brief Digression about Colours
(in which the ghost of Isaac Newton returns to haunt us)

A Quick Note about Color
HTML defined 16 popular colors that could be referenced by name. CSS
added one more (orange), so there are 17 valid named colors in CSS.
Some browsers recognize as many as 140 color names, but they’re not
standardized, so use them at your peril.

aqua navy

black olive

blue orange

fuchsia purple

gray red

green silver

lime teal

maroon white

yellow

Mixing Colors
The three primary colors of light are Red, Green and Blue (ha! what did
you think they were? Pigment and light are not the same!). Any color can
be made by mixing various proportions of these three primary colors.

Computers can measure colors in a variety of ways—usually as a
number between 0 and 255. To make matters worse, those numbers are
usually represented as a hexadecimal number, which is base 16 (we
normally count in base 10). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F.

Actually, this is just a shorthand so that colors can be identified by two
digits rather than three. It saves space and typing.

Hex Triplets

The color is specified as a number: a preceding # sign followed by six
hexadecimal digits. The pattern is this:

#RRGGBB

Each pair of digits represents the amount of that color to use — from
none (00) to 100% (FF).

So pure red is synonymous with #FF0000. Pure green is synonymous with
#00FF00. Pure blue is synonymous with #0000FF.

In contrast to pigments, mixing all the colors together makes white
(#FFFFFF). Subtracting out all the colors makes black (#000000). Higher
numbers mean a lighter color; lower numbers mean a darker color.

End of Digression
(Isaac Newton rests again in peace)

Smaller Boxes Win

body

<p></p>

We’ve seen how big box qualities are
inherited by smaller child boxes. But
any child can “override” a parent’s
definition.

<h2> </h2>

For example, I can add this to my CSS
to modify the page:

 h2 { background: green;  
 color: white;  
 }

A smaller box can modify or
supplement any of the qualities it may
have inherited from its parent.

CSS Design Strategy
Using a CSS, you’ll follow these general tactics:

1. Define the most universal, omnipresent qualities in the biggest
possible box.

2. Define smaller boxes only when they are either different from the
bigger box or when they must add new qualities to those already
inherited from the bigger box.

body

section
Well, I can. I can use a <section> or
<div> container to group the
elements. These containers are
normally invisible, but I can stylize
them with a CSS.

Grouping Elements

<p></p>

HTML5 has many grouping
containers like <section> and
. A <section> is a block
element; a is an inline
element. Both are invisible unless
you specify otherwise. See our
HTML handout for more specifics.

What if I wanted somehow to
treat a group of boxes as one unit?

<p></p>

<p></p>

Block Inline

Block-level elements generate an
element box that (by default) fills its
parent element’s content area and
cannot have other elements at its
sides. In other words, it generates
“breaks” before and after the element
box. The most familiar block-level
elements from HTML are p and div.
Replaced elements can be block-level
elements, but they usually are not.
(CSS Reference, p. 9)

Inline-level elements generate an
element box within a line of text and
do not break up the flow of the line.
The best inline element example is
the a element in HTML. Other
candidates would be strong and em.
These elements do not generate a
“break” before or after themselves
and so they can appear within the
content of another element without
disrupting its display. (CSS Reference,  
p. 9)

<hr> 
<section>

 

Identifying Your Boxes
Any container can be identified via a label. It’s very common to label
<div>’s and ’s, but any and all tags can take an attribute that labels
it:

 id=“some unique name” 
 class=“some group name”

Examples:

 <p id=“title”> </p>  
 <section class=“warning”> </section>

Here are the rules:

 id names have to be UNIQUE; there can be only ONE per HTML
document (most browsers don’t check, but a validator will).

 classes can have multiple occurrences; class is a useful way to
identify elements that may repeat throughout a web page.

Class & ID in CSS...
CSS can stylize id’s and classes with a special syntax:

 .warning { color: red; } /* class selector */

 #footnotes { font-size: smaller; } /* ID selector */

Hi!
Here’s the mnemonic I use:

 CD-HI

... which stands for

 Class = Dot ; Hash = ID

Using Classes

Remember the display property? What if we wanted to center only
certain tags on our webpage, but not all of them?

 img.centered { 
 display: block;  
 margin-left: auto;  
 margin-right: auto;  
 }

Here any tag will take on this presentational
style. A standard tag unadorned by a class attribute will remain
inline, which is the default presentational style for that tag.

Pseudo-Classes
It’d be great if we could add classes to HTML “on the fly” — for
example, to add classes to <a> tags signifying links that have or have not
been visited yet so we could stylize them differently:

 Goofus 
 Crikey  

CSS is already there: we can use “pseudo-classes,” which are kinds of
“phantom” or “ghost” classes. They are inferred or implied by the status
of an element, but aren’t coded specifically into the HTML. The
browser’s “history” cache keeps track of links that have been visited, for
example, so we don’t need to keep track of that. But we can use that
information to stylize links:

 a:visited { color: orange; text-decoration: none; }

Pseudo-Classes
Pseudo-class selectors begin with a colon (:) and NO SPACE IS ALLOWED
BETWEEN THE COLON AND THE NAME. Putting a space after the colon
will confuse the browser and it will ignore your CSS pseudo-class styles.

 :link — unvisited links  
 :visited — visited links  
 :hover — in a mouse-over state  
 :active — in a mouse-down (click) state

Order is Important!

Remember, in a CSS the last rule wins. Stylizing links with pseudo-classes
can be tricky because you have to define them in the proper sequence
so that mouseovers and clicks behave properly. The sequence above is
correct and fits the mnemonic:

 LoVe — HAte

Tip: Flush the Cache
Web browsers scan HTML documents to see if any external documents
are needed by this web page. A CSS is one such external document, so
the browser sends another request to the server, downloads the CSS,
and sticks it into the cache for future reference. The browser now
references the cache — and does not return to the server — whenever
it needs that particular CSS.

So what’s the problem? If you’re working on a web page and change the
CSS, your changes may not always show up when you reload the page.
Why not? Because the browser can’t easily tell that the CSS document
in the cache is not the current version.

Solution? Flush the cache. (Experiment with your browser to see how.)

In some browsers, you can also hold down shift and click refresh. The
browser will fetch the most current version of the CSS.

1. Remember the syntax: selector { property: value; }

2. Learn the valid properties from a good CSS book or the W3
Schools site; CSS is its own language.

3. Force browsers into Standards Mode with a DOCTYPE tag.

4. Remember the mnemonics:

CD: “Hi!”

LoVe – HAte

5. No spaces after colon (:) in pseudo-class selectors!

6. Build your own boxes with the invisible tags <section> (block)
and (inline).

7. Flush the cache and reload the page if CSS changes don’t take
effect.

Top 7 CSS Tips

